首页_利澳注册水处理工程有限公司
首页_利澳注册水处理工程有限公司
全站搜索
文章正文
欧皇_平台注册登录中心-首页
作者:an888    发布于:2024-01-28 21:15    文字:【】【】【
摘要:欧皇_平台注册登录中心-首页 7.1.1 城镇污水和再生水处理程度、方法应根据国家现行有关排放标准、污染物的来源及性质和处理目标确定。7.1.4 污水厂应通过扩容或增加调蓄设施,保证

  欧皇_平台注册登录中心-首页7.1.1 城镇污水和再生水处理程度、方法应根据国家现行有关排放标准、污染物的来源及性质和处理目标确定。7.1.4 污水厂应通过扩容或增加调蓄设施,保证雨季设计流量下的达标排放。当采用雨水调蓄时,污水厂的雨季设计流量可根据调蓄规模相应降低。2 当污水为自流进入时,应满足雨季设计流量下运行要求;当污水为提升进入时,应按每期工作水泵的最大组合流量校核管渠配水能力。4 初次沉淀池应按旱季设计流量设计,雨季设计流量校核,校核的沉淀时间不宜小于30min。7.1.6 水质和(或)水量变化大的污水厂宜设置调节水质和(或)水量的设施。7.1.7 处理构筑物的个(格)数不应少于2个(格),并应按并联设计。7.1.8 并联运行的处理构筑物间应设置均匀配水装置,各处理构筑物系统间应设置可切换的连通管渠。7.1.11 污水厂的供电系统应按二级负荷设计。重要的污水厂内的重要部位应按一级负荷设计。7.1.1污水的处理目标主要根据排入地表水域环境功能和保护目标确定,再生水的处理目标主要根据再生水用户的要求确定。7.1.2本条关于污水厂处理效率的规定取值是根据国内污水厂处理效率的实践数据,并参考国外资料制定的。其中,一级处理的处理效率主要是沉淀池的处理效率,未计入格栅和沉砂池的处理效率;二级处理的处理效率包括一级处理;深度处理的处理效率包括一级和二级处理。调研数据来源于国内包括上海、重庆、青岛、郑州、深圳等地污水厂的实际运行数据。7.1.4当采用雨水调蓄时,污水厂的雨季设计流量可低于服务范围内的雨季设计流量,根据调蓄之后的流量确定。1污水处理构筑物设计应根据污水厂的远期规模和分期建设情况统一安排,按每期污水量设计,并考虑到分期扩建的可能性和灵活性,有利于工程建设在短期内见效。4初次沉淀池应按旱季设计流量设计,保证旱季时的沉淀效果。降雨时,容许降低沉淀效果,故用雨季设计流量校核,此时沉淀时间可适当缩短,但不宜小于30min。5二级处理构筑物按旱季设计流量设计,为保护降雨时河流水质,改善污水厂的出水水质,故用雨季流量校核。当二级处理构筑物用雨季流量校核无法满足出水水质要求时,应调整设计流量,保障出水水质。7.1.6美国《污水处理设施》规定,在水质、水量变化大的污水厂中,应设置调节设施。有些污水厂昼夜处理流量差别较大或雨季流量较大,使污水厂进水水质、水量变化很大,无法保证生物处理效果,据此制定本条。7.1.7根据国内污水厂的设计和运行经验,处理构筑物的个(格)数,不应少于2个(格),便于检修维护;同时按并联设计,可使污水的运行更为可靠、灵活和合理。7.1.8并联运行的处理构筑物间的配水是否均匀,直接影响构筑物能否达到设计流量和处理效果,所以设计时应重视配水装置。配水装置一般采用堰或配水井等方式。构筑物系统之间设可切换的连通管渠,可灵活组合各组运行系列,同时,便于操作人员观察、调节和维护。7.1.9处理构筑物中污水的入口和出口处设置整流措施,使整个断面布水均匀,并能保持稳定的池水面,保证处理效率。7.1.102000年5月实施的《城市污水处理及污染防治技术政策》规定:为保证公共卫生安全,防止传染性疾病传播,城镇污水处理应设置消毒设施。此外,现行国家标准《城镇污水处理厂污染物排放标准》GB18918中首次将微生物指标(粪大肠菌群数)列为基本控制指标,故城镇污水有必要进行消毒处理。现行行业标准《再生水水质标准》SL368,对不同用途的再生水均有余氯和卫生学指标的规定,因此再生水必须进行消毒处理。7.1.11本条为强制性条文,必须严格执行。考虑到污水厂中断供电可能对该地区的政治、经济、生活和周围环境等造成不良影响,污水厂的供电负荷等级应按二级设计。重要的污水厂是指中断供电对该地区的政治、经济、生活和周围环境等造成重大影响的污水厂。重要部位包括进水泵房、污泥焚烧系统的安全保障设施以及地下或半地下污水厂的安全保障用通风、消防设施等。7.1.12为了保证寒冷地区的污水厂在冬季能正常运行,有关的处理构筑物、管渠和其他设施应有保温防冻措施。一般有池上加盖、池内加热和建于房屋内等措施,视当地气温和处理构筑物的运行要求而定。7.1.13本条为强制性条文,必须严格执行。解决方案:通过空气间隙和设置中间储存池,然后再和处理装置连接,以防止污染给水系统、再生水系统。

  7.2 厂址选择和总体布置7.2.1 污水厂、污泥处理厂位置的选择应符合城镇总体规划和排水工程专业规划的要求,并应根据下列因素综合确定:1 便于污水收集和处理再生后回用和安全排放;2 便于污泥集中处理和处置;3 在城镇夏季主导风向的下风侧;4 有良好的工程地质条件;5 少拆迁、少占地,根据环境影响评价要求,有一定的卫生防护距离;6 有扩建的可能;7 厂区地形不应受洪涝灾害影响,防洪标准不应低于城镇防洪标准,有良好的排水条件;8 有方便的交通、运输和水电条件;9 独立设置的污泥处理厂,还应有满足生产需要的燃气、热力、污水处理及其排放系统等设施条件。7.2.2 污水厂的建设用地应按项目总规模控制;近期和远期用地布置应按规划内容和本期建设规模,统一规划,分期建设;公用设施宜一次建设,并尽量集中预留用地。7.2.3 污水厂的总体布置应根据厂内各建筑物和构筑物的功能和流程要求,结合厂址地形、气候和地质条件,综合考虑运行成本和施工、维护、管理的便利性等因素,经技术经济比较后确定。7.2.4 污水和污泥处理构筑物宜根据情况分别集中布置。处理构筑物的间距应紧凑、合理,符合国家现行防火标准的有关规定,并应满足各构筑物的施工、设备安装和埋设各种管道及养护、维修和管理的要求。7.2.5 生产管理建筑物和生活设施宜集中布置,其位置和朝向应力求合理,并应和处理构筑物保持一定距离。7.2.6 污水厂厂区内各建筑物造型应简洁美观、节省材料、选材适当,并应使建筑物和构筑物群体的美观效果与周围环境协调。7.2.7 厂区布置应尽量节约用地。当污水厂位于用地非常紧张、环境要求高的地区,可采用地下或半地下污水厂的建设方式,但应进行充分的必要性和可行性论证。7.2.8 地下或半地下污水厂设计应综合考虑规模、用地、环境、投资等各方面因素,确定处理工艺、建筑结构、通风、除臭、交通、消防、供配电及自动控制、照明、给排水、监控等系统的配置。各系统之间应相互协调。7.2.9 地下或半地下污水厂应充分利用污水厂的上部空间,有效利用土地资源,提高土地利用率。7.2.10 污水厂的工艺流程、竖向设计宜充分利用地形,符合排水通畅、降低能耗、平衡土方的要求。7.2.11 厂区的消防设计和消化池、储气罐、污泥气压缩机房、污泥气发电机房、污泥气燃烧装置、污泥气管道、污泥好氧发酵工程辅料存储区、污泥干化装置、污泥焚烧装置及其他危险品仓库等的设计,应符合国家现行防火标准的有关规定。7.2.12 污水厂内可根据需要,在适当地点设置堆放材料、备件、燃料和废渣等物料及停车的场地。7.2.13 污水厂应设置通向各构筑物和附属建筑物的必要通道,并应符合下列规定:1 主要车行道的宽度:单车道宜为4.0m,双车道宜为6.0m~7.0m;2 车行道的转弯半径宜为6.0m~10.0m;3 人行道的宽度宜为1.5m~2.0m;4 通向高架构筑物的扶梯倾角宜采用30,不宜大于45;5 天桥宽度不宜小于1.0m;6 车道、通道的布置应符合国家现行防火标准的有关规定,并应符合当地有关部门的规定;7 地下或半地下污水厂箱体宜设置车行道进出通道,通道坡度不宜大于8%,通道敞开部分宜采用透光材料进行封闭;8 进入地下污水厂箱体的通道前应设置驼峰,驼峰高度不应小于0.5m,驼峰后在通道的中部和末端均应设置横截沟,并应配套设置雨水泵房。7.2.14 污水厂周围根据现场条件应设置围墙,其高度不宜小于2.0m。7.2.15 污水厂的大门尺寸应能允许运输最大设备或部件的车辆出入,并应另设运输废渣的侧门。7.2.16 污水厂内各种管渠应全面安排,避免相互干扰。处理构筑物间输水、输泥和输气管线的布置应使管渠长度短、损失小、流行通畅、不易堵塞和便于清通。各污水处理构筑物间的管渠连通,在条件适宜时,宜采用明渠。7.2.17 管道复杂时宜设置管廊,并应符合下列规定:1 管廊内宜敷设仪表电缆、电信电缆、电力电缆、给水管、污水管、污泥管、再生水管、压缩空气管等,并设置色标;2 管廊内应设通风、照明、广播、电话、火警及可燃气体报警系统、独立的排水系统、吊物孔、人行通道出入口和维护需要的设施等,并应符合国家现行防火标准的有关规定。7.2.18 污水厂内应充分体现海绵城市建设理念,利用绿色屋顶、透水铺装、生物滞留设施等进行源头减排,并结合道路和建筑物布置雨水口和雨水管道,地形允许散水排水时,可采用植草沟和道路边沟排水。7.2.19 污水厂应合理布置处理构筑物的超越管渠。7.2.20 处理构筑物应设排空设施,排出水应回流处理。7.2.21 污水厂附属建筑物的组成和面积,应根据污水厂的规模、工艺流程、计算机监控系统水平和管理体制等,结合当地实际情况确定,并应符合国家现行标准的有关规定。7.2.22 根据维护管理的需要,宜在厂区适当地点设置配电箱、照明、联络电话、冲洗水栓、浴室、厕所等设施。7.2.23 处理构筑物应设置栏杆、防滑梯等安全措施,高架处理构筑物还应设置避雷设施。7.2.24 地下或半地下污水厂的综合办公楼、总变电室、中心控制室等运行和管理人员集中的建筑物宜设置于地面上;有爆炸危险或火灾危险性大的设施或处理单元应设置于地面上。7.2.25 地下或半地下污水厂污水进口应至少设置一道速闭闸门。7.2.26 地下或半地下污水厂产生臭气的主要构筑物应封闭除臭,箱体内应设置强制通风设施。7.2.27 地下或半地下污水厂箱体顶部覆土厚度应根据上部种植绿化形式选择确定,并宜为0.5m~2.0m。7.2.28 地下或半地下污水厂箱体内人员操作层的净空不应小于4.0m,并宜选用便于拆卸、重量较轻和便于运输的设备。条文说明7.2.1污水厂位置的选择应在城镇总体规划和排水工程专业规划的指导下进行,以保证总体的社会效益、环境效益和经济效益。1污水厂处理后的尾水是宝贵的资源,可以再生回用,因此污水厂的厂址选择要考虑便于出水回用;同时,排放口的安全性和尾水排放的安全性因素也相当重要,因此污水厂的厂址应便于安全排放。2根据污泥处理和处置的需要,也应考虑方便集中处理处置。3污水厂应选在该城镇对周围居民点的环境质量影响最小的方位,一般位于夏季主导风向的下风侧。4厂址的良好工程地质条件包括土质、地基承载力和地下水位等,可为工程的设计、施工、管理和节省造价提供有利条件。5根据我国耕田少、人口多的实际情况,选厂址时应尽量少拆迁、少占农田,使污水厂工程易于开工建设。同时,根据环境影响评价要求,应和附近居民点有一定的卫生防护距离,并予以绿化。6厂址的区域面积不仅应考虑规划期的需要,尚应考虑满足在不可预见的将来有扩建的可能。7厂址的防洪和排水问题必须重视,一般不应在淹水区建污水厂,当必须在可能受洪水威胁的地区建厂时,应采取防洪措施。另外,有良好的排水条件,可节省建造费用。本款规定防洪标准不应低于城镇防洪标准。8为缩短污水厂建造周期和有利于污水厂的日常管理,应有方便的交通、运输和水电条件。9独立设置的污泥处理厂,若污泥处理工艺需要利用燃气或热力等,则需要考虑污泥处理厂周边是否有相应的设施条件;对于污泥处理设施产生的污泥水和厂内的生活污水,应考虑设置污水处理及其排放系统。7.2.2污水厂建设用地必须贯彻合理利用土地和切实保护耕地的基本国策。考虑到城镇污水量的增加趋势较快,污水厂的建造周期较长,污水厂建设用地应按项目总规模确定。同时,应根据现状水量和排水收集系统的建设周期合理确定近期规模。尽可能近期少拆迁、少占农田,做出合理的分期建设、分期征地的安排。本条规定既保证了污水厂在远期扩建的可能性,又利于工程建设在短期内见效。7.2.3根据污水厂的处理级别(一级处理或二级处理)、处理工艺(活性污泥法或生物膜法)、污泥处理流程(浓缩、消化、脱水、好氧发酵、干化、焚烧和污泥气利用等)、除臭系统布置和各种构筑物的形状、大小及其组合,结合厂址地形、气候和地质条件等,可有各种总体布置形式,必须综合确定。总体布置恰当,可为今后施工、维护和管理等提供良好条件。7.2.4污水和污泥处理构筑物各有不同的处理功能和操作、维护、管理要求,分别集中布置有利于管理。合理的布置可保证施工安装、操作运行和管理维护的安全方便,并减少占地面积。7.2.5城镇污水包括生活污水和一部分工业废水,往往散发臭味和对人体健康有害的气体。另外,在生物处理构筑物附近的空气中,细菌芽孢数量也较多。因此,处理构筑物附近的空气质量相对较差。生产管理建筑物和生活设施应与处理构筑物保持一定距离,并尽可能集中布置,便于通过绿化隔离或处理构筑物加盖除臭等措施,保证管理人员有良好的工作环境,以免影响正常工作。办公室、化验室和食堂等的位置应处于夏季主导风向的上风侧,东南朝向。7.2.6在满足经济实用的前提下,污水厂建设应适当考虑美观。除在厂区进行必要的绿化、美化外,还应根据污水厂内建筑物和构筑物的特点,使各建筑物之间、建筑物和构筑物之间、污水厂和周围环境之间都能达到建筑美学的和谐一致。7.2.7地下或半地下污水厂作为污水厂的一种建设方式,主要适用于用地非常紧张、对环境要求高、地上污水厂选址困难的区域,可以提高土地使用效率、提升地面景观和周边土地价值等,但由于其建设成本较高,加上地下或半地下式污水厂本身所存在的消防、通风等问题,在选择时应进行充分的必要性和可行性论证。7.2.8地下或半地下污水厂设计需考虑社会效益、环境效益和经济效益的协调统一,并遵循“运行安全、能源节约、环境协调”的设计理念。7.2.9地下或半地下污水厂一般位于用地紧张的城市区域,上部空间也根据当地实际情况采取建设开放式的绿地公园、停车场,设置太阳能回收装置等措施,充分利用土地资源。7.2.11消化池、贮气罐、污泥气燃烧装置、污泥气管道、污泥好氧发酵工程辅料存储区等具有火灾和爆炸危险的场所,应符合现行国家标准《建筑设计防火规范》GB50016、《消防给水及消火栓系统技术规范》GB50974和《城镇燃气设计规范》GB50028的有关规定。7.2.12堆放场地,尤其是堆放废渣(如泥饼和煤渣)的场地,宜设置在较隐蔽处,不宜设在主干道两侧。7.2.13通道包括双车道、单车道、人行道、扶梯和人行天桥等。污水厂厂区的通道应根据通向构筑物和建筑物的功能要求,如运输、检查、维护和管理的需要设置。1根据厂区消防通道要求,单行道宽度由原标准中规定的3.5m~4.0m改为4.0m。4根据管理部门意见,扶梯不宜太陡,尤其是通行频繁的扶梯,并宜利于搬运重物上下扶梯。7、8因为地下或半地下污水厂箱体进出通道的最低点比周围地面低很多,形成盆地,且纵坡很大,雨水迅速向最低点汇集,易造成积水。因此,从安全和节能的角度出发,通道敞开部分采用透光材料进行封闭,通道前设置驼峰,避免地面雨水进入箱体,通道中部和末端设置横截沟和雨水泵房,将进入箱体通道的雨水迅速排出。应将高处可以以重力流排出的雨水和低处需要借助水泵排出的雨水分开,建成高水高排和低水低排系统,高水自流排放,低水水泵排放。7.2.14根据污水厂的安全要求,污水厂周围应设置围墙,高度不宜太低,不宜低于2.0m。7.2.16污水厂内管渠较多,设计时应全面安排,可防止错、漏、碰、缺。管渠尺寸应按可能通过的最高时流量计算确定,并按最低时流量复核,防止发生沉积。明渠的水头损失小,不易堵塞,便于清理,应尽量采用明渠。合理的管渠设计和布置可保障污水厂运行的安全、可靠、稳定,并节省费用。7.2.17在管道复杂时宜设置管廊,便于检查维修。7.2.18污水厂内建设应体现海绵城市建设理念,注重源头减排,减少地面径流。设计需根据厂区实际情况,结合用地、布局和景观等因素选择合适的工程设施。7.2.19污水厂内合理布置超越管渠,可使水流越过某处理构筑物流至其后续构筑物。其合理布置应保证在构筑物维护和紧急修理以及发生其他特殊情况时,对出水水质影响小,并能迅速恢复正常运行。7.2.20考虑到处理构筑物的维护检修,应设排空设施。为了保护环境,排空水应回流处理,不应直接排入水体,并应有防止倒灌的措施,确保其他构筑物的安全运行。排空设施有构筑物底部预埋排水管道和临时设泵抽水两种形式。7.2.21确定污水厂附属建筑物的组成和面积的影响因素较复杂,如各地的管理体制不一,检修协作条件不同,污水厂的规模和工艺流程不同等,因此,尚难规定统一的标准。目前许多污水厂设有计算机控制系统,减少了工作人员和附属构筑物建筑面积。7.2.22根据国内污水厂的实践经验,为了有利于维护管理,宜在厂区内适当地点设置一定的辅助设施,包括巡回检查和取样等有关地点所需的照明,维修所需的配电箱,巡回检查或维修时联络用的电话,冲洗用的给水栓、浴室和厕所等。7.2.23为了确保操作人员安全,处理构筑物应设置安全防护设施。7.2.25速闭闸门设置的目的是防止停电导致污水厂受淹。7.2.27景观设计是地下或半地下污水厂的亮点,要结合地下箱体顶部的承重能力合理配置景观、灌木和乔木等。种植草坪的覆土厚度宜大于或等于0.5m;种植灌木的覆土厚度宜大于或等于1.0m;种植乔木的覆土厚度宜大于或等于1.5m。7.2.28箱体净空高度的要求是为确保人员通行和设备安装检修的空间。考虑到地下箱体内净空有限,宜选用便于拆卸、重量较轻和便于运输的设备。7.3 格栅

  7.3 格栅7.3.1 污水处理系统或水泵前应设置格栅。7.3.2 格栅栅条间隙宽度应符合下列规定:1 粗格栅:机械清除时宜为16mm~25mm,人工清除时宜为25mm~40mm。特殊情况下,最大间隙可为100mm。2 细格栅:宜为1.5mm~10mm。3 超细格栅:不宜大于1mm。4 水泵前,应根据水泵要求确定。7.3.3 污水过栅流速宜采用0.6m/s~1.0m/s。除转鼓式格栅除污机外,机械清除格栅的安装角度宜为60~90。人工清除格栅的安装角度宜为30~60。7.3.4 格栅除污机底部前端距井壁尺寸,钢丝绳牵引除污机或移动悬吊葫芦抓斗式除污机应大于1.5m;链动刮板除污机或回转式固液分离机应大于1.0m。7.3.5 格栅上部必须设置工作平台,其高度应高出格栅前最高设计水位0.5m,工作平台上应有安全和冲洗设施。7.3.6 格栅工作平台两侧边道宽度宜采用0.7m~1.0m。工作平台正面过道宽度,采用机械清除时不应小于1.5m,采用人工清除时不应小于1.2m。7.3.7 粗格栅栅渣宜采用带式输送机输送;细格栅栅渣宜采用螺旋输送机输送,输送过程宜进行密封处理。7.3.8 格栅间应设置通风设施和硫化氢等有毒有害气体的检测与报警装置。条文说明7.3.1在污水中混有纤维、木材、塑料制品和纸张等大小不同的杂物,为了防止水泵和处理构筑物的机械设备和管道被磨损或堵塞,使后续处理流程能顺利进行,应在污水处理系统或水泵前设置格栅。7.3.2根据调查,本条规定了粗格栅栅条间隙宽度:机械清除时宜为16mm~25mm,人工清除时宜为25mm~40mm,特殊情况最大栅条间隙可采用100mm;细格栅栅条间隙宽度宜为1.5mm~10mm。膜处理工艺和曝气生物滤池工艺需要将细小物质安全可靠地分离出去,例如头发和细小纤维物质等,避免引起膜组件或滤池填料堵塞而无法正常工作,因此膜处理工艺和曝气生物滤池工艺前一般需要设置超细格栅作为预处理工艺。根据国内外工程实际应用情况,超细格栅栅条间隙宜小于或等于1mm。水泵前,格栅除污机栅条间隙宽度应根据水泵进口口径按表13选用。对于阶梯式格栅除污机、回转式固液分离机和转鼓式格栅除污机的栅条间隙或栅孔可按需要确定。表13 栅条间隙如泵站较深,泵前格栅机械清除或人工清除比较复杂,可在泵前设置仅为保护水泵正常运转的、空隙宽度较大的粗格栅(宽度根据水泵要求,国外资料认为可大到100mm)以减少栅渣量,并在处理构筑物前设置间隙宽度较小的细格栅,保证后续工序的顺利进行。这样既便于维修养护,也不会增加投资。7.3.3过栅流速是参照国外资料制定的:欧盟标准BSEN12255-3:2000《污水处理厂第3部分:预处理》规定过栅流速在最大流量下不超过1.2m/s;《日本指南》为0.45m/s;美国《污水处理厂设计手册》(1998年,以下简称美国《污水厂手册》)为0.6m/s~1.2m/s;法国《水处理于册》(1978年)为0.6m/s~1.0m/s。本标准规定过栅流速宜为0.6m/s~1.0m/s。格栅倾角是根据国内外采用的数据而制定的,除转鼓式格栅除污机外,其资料见表14。表14 格栅倾角7.3.4钢丝绳牵引格栅除污机和移动悬吊葫芦抓斗式格栅除污机应考虑耙斗尺寸和安装人员的工作位置,其他类型格栅除污机由于齿耙尺寸较小,其尺寸可适当减小。7.3.5本条规定是为便于清除栅渣和养护格栅。7.3.6本条是根据国内污水厂养护管理的实践经验而制定的。7.3.7栅渣通过机械输送、压桏脱水外运的方式,在国内新建的大中污水厂中已得到应用。关于栅渣的输送设备采用:粗格栅渣宜采用带式输送机,细格栅渣宜采用螺旋输送机;对输送距离大于8.0m宜采用带式输送机,对距离较短的宜采用螺旋输送机;而当污水中有较大的杂质时,不管输送距离长短,均宜采用皮带输送机。由于格栅栅渣的输送过程会散发臭味,因此输送机宜采用密封结构,进出料口处宜进行密封处理,防止臭味逸出,并便于臭气收集和处理。7.3.8本条为强制性条文,必须严格执行。为改善格栅间的操作条件和确保操作人员安全,应设置通风设施和硫化氢等有毒有害气体的检测与报警装置。7.4 沉砂池

  7.4 沉砂池7.4.1 污水厂应设置沉砂池。沉砂池应按去除相对密度2.65、粒径0.2mm以上的砂粒进行设计。7.4.2 平流沉砂池的设计应符合下列规定:1 最大流速应为0.30m/s,最小流速应为0.15m/s;2 停留时间不应小于45s;3 有效水深不应大于1.5m,每格宽度不宜小于0.6m。7.4.3 曝气沉砂池的设计应符合下列规定:1 水平流速不宜大于0.1m/s;2 停留时间宜大于5min;3 有效水深宜为2.0m~3.0m,宽深比宜为1.0~1.5;4 曝气量宜为5.0L/(ms)~12.0L/(ms)空气;5 进水方向应和池中旋流方向一致,出水方向应和进水方向垂直,并宜设置挡板;6 宜设置除砂和撇油除渣两个功能区,并配套设置除渣和撇油设备。7.4.4 旋流沉砂池的设计应符合下列规定:1 停留时间不应小于30s;2 表面水力负荷宜为150m/(mh)~200m/(mh);3 有效水深宜为1.0m~2.0m,池径和池深比宜为2.0~2.5;4 池中应设立式桨叶分离机。7.4.5 污水的沉砂量可按0.03L/m计算,合流制污水的沉砂量应根据实际情况确定。7.4.6 砂斗容积不应大于2d的沉砂量;当采用重力排砂时,砂斗斗壁和水平面的倾角不应小于55。7.4.7 沉砂池除砂宜采用机械方法,并经砂水分离后储存或外运。当采用人工排砂时,排砂管直径不应小于200mm。排砂管应考虑防堵塞措施。条文说明7.4.1一般情况下,由于在污水系统中有些井盖密封不严,有些支管连接不合理和部分家庭院落的雨水进入污水管,在污水中会含有相当数量的砂粒等杂质。设置沉砂池可以避免后续处理构筑物和机械设备的磨损,减少管渠和处理构筑物内的沉积,避免重力排泥困难,防止对生物处理系统和污泥处理系统运行的干扰。7.4.2本条是根据国内污水厂的试验资料和管理经验,并参照国外有关资料而制定。平流沉砂池的设计应符合下列规定:1最大流速应为0.3m/s,最小流速应为0.15m/s。在此流速范围内可避免已沉淀的砂粒再次翻起,也可避免污水中的有机物大量沉淀,能有效地去除相对密度2.65、粒径0.2mm以上的砂粒。2根据国内的实际应用情况,同时参考国外有关资料,最高时流量的停留时间不应小于45s。3从养护方便考虑,本款规定每格宽度不宜小于0.6m。有效水深在理论上和沉砂效率无关,美国《污水厂手册》规定为0.6m~1.5m,本款规定不应大于1.5m。7.4.3根据国内污水含砂量特别高的特性,参照国际经验和实际运行数据(见表15),本标准确定曝气沉沙池的停留时间宜大于5min。由于沉砂池停留时间增加,曝气量采用原标准规定0.1m/m~0.2m/m计算偏小,因此,根据国内污水厂的运行数据,参照国外有关资料,曝气量按曝气沉砂池池长进行计算。为避免污水中的油类物质对生物反应系统的影响,保证油类物质的去除效果,宜将除砂和撇油除渣功能区分隔,并配套设置除渣和撇油设备。表15 曝气沉砂池设计数据续表157.4.4本条是根据国内的实践数据,并参照国外资料而制定的。7.4.5根据北京、上海、青岛等城市的实践数据,污水的沉砂量分别为:0.02L/m、0.02L/m、0.11L/m,污水沉砂量的含水率为60%,密度为1500kg/m。参照国外资料,本条规定沉砂量为0.03L/m,各国沉砂量情况见表16。表16 各国沉砂量情况7.4.6 根据国内沉砂池的运行经验,砂斗容积不应大于2d的沉砂量;当采用重力排砂时,砂斗斗壁和水平面的倾角不应小于55,国外也有类似规定。7.4.7 国内外的实践经验表明,沉砂池的除砂一般采用砂泵或空气提升泵等机械方法,沉砂经砂水分离后,干砂在储砂池或晒砂场储存或直接装车外运。由于排砂的不连续性,重力或机械排砂方法均会发生排砂管堵塞现象,在设计中应考虑水力冲洗等防堵塞措施。考虑到排砂管易堵,本条规定采用人工排砂时,排砂管直径不应小于200mm。7.5 沉淀池

  7.5 沉淀池7.5.1 沉淀池的设计数据宜按表7.5.1的规定取值。合建式完全混合生物反应池沉淀区的表面水力负荷宜按本标准第7.6.15条的规定取值。表7.5.1 沉淀池的设计数据注:当二次沉淀池采用周边进水周边出水辐流沉淀池时,固体负荷不宜超过200kg/(md)。7.5.2 沉淀池的超高不应小于0.3m。7.5.3 沉淀池的有效水深宜采用2.0m~4.0m。7.5.4 当采用污泥斗排泥时,每个污泥斗均应设单独的阀门(或闸门)和排泥管。污泥斗斜壁和水平面的倾角,方斗宜为60,圆斗宜为55。7.5.5 初次沉淀池的污泥区容积,除设机械排泥的宜按4h的污泥量计算外,其余宜按不大于2d污泥量计算。活性污泥法处理后的二次沉淀池污泥区容积,宜按不大于2h污泥量计算,并应有连续排泥措施;生物膜法处理后的二次沉淀池污泥区容积,宜按4h污泥量计算。7.5.6 排泥管的直径不应小于200mm。7.5.7 当采用静水压力排泥时,初次沉淀池的静水头不应小于1.5m;二次沉淀池的静水头,生物膜法处理后不应小于1.2m,活性污泥法处理池后不应小于0.9m。7.5.8 初次沉淀池的出口堰最大负荷不宜大于2.9L/(ms);二次沉淀池的出水堰最大负荷不宜大于1.7L/(ms),当二次沉淀池采用周边进水周边出水辐流沉淀池时,出水堰最大负荷可适当放大。7.5.9 沉淀池应设置浮渣的撇除、输送和处置设施。Ⅱ 沉淀池7.5.10 平流沉淀池的设计应符合下列规定:1 每格长度和宽度之比不宜小于4,长度和有效水深之比不宜小于8,池长不宜大于60m。2 宜采用机械排泥,排泥机械的行进速度宜为0.3m/min~1.2m/min。3 非机械排泥时,缓冲层高度宜为0.5m;机械排泥时,缓冲层高度应根据刮泥板高度确定,且缓冲层上缘宜高出刮泥板0.3m。4 池底纵坡不宜小于0.01。7.5.11 竖流沉淀池的设计应符合下列规定:1 水池直径(或正方形的一边)和有效水深之比不宜大于3;2 中心管内流速不宜大于30mm/s;3 中心管下口应设有喇叭口和反射板,板底面距泥面不宜小于0.3m。7.5.12 辐流沉淀池的设计应符合下列规定:1 水池直径(或正方形的一边)和有效水深之比宜为6~12,水池直径不宜大于50m。2 宜采用机械排泥,排泥机械旋转速度宜为1r/h~3r/h,刮泥板的外缘线m/min。当水池直径(或正方形的一边)较小时也可采用多斗排泥。3 缓冲层高度,非机械排泥时宜为0.5m;机械排泥时,应根据刮泥板高度确定,且缓冲层上缘宜高出刮泥板0.3m。4 坡向泥斗的底坡不宜小于0.05。5 周边进水周边出水辐流沉淀池应保证进水渠的均匀配水。Ⅲ 斜管(板)沉淀池7.5.13 当需要挖掘原有沉淀池潜力或建造沉淀池面积受限制时,通过技术经济比较,可采用斜管(板)沉淀池。7.5.14 升流式异向流斜管(板)沉淀池的表面水力负荷,可按普通沉淀池表面水力负荷的2倍计;但对于斜管(板)二次沉淀池,尚应以固体负荷核算。7.5.15 升流式异向流斜管(板)沉淀池的设计应符合下列规定:1 斜管孔径(或斜板净距)宜为80mm~100mm;2 斜管(板)斜长宜为1.0m~1.2m;3 斜管(板)水平倾角宜为60;4 斜管(板)区上部水深宜为0.7m~1.0m;5 斜管(板)区底部缓冲层高度宜为1.0m。7.5.16 斜管(板)沉淀池应设置冲洗设施。Ⅳ高效沉淀池7.5.17 高效沉淀池表面水力负荷宜为6m/(mh)~13m/(mh)。混合时间宜为0.5min~2.0min,絮凝时间宜为8min~15min。污泥回流量宜占进水量的3%~6%。条文说明Ⅰ 一般规定7.5.1为使用方便和易于比较,根据目前国内的实践经验并参照美国、日本等的资料,沉淀池以表面水力负荷为主要设计参数。按表面水力负荷设计沉淀池时,应校核固体负荷、沉淀时间和沉淀池各部分主要尺寸的关系,使之相互协调。表17为国外有关表面水力负荷和沉淀时间的取值范围。表17 国外有关表面水力负荷和沉淀时间取值范围注:*单位为m/(mh)。按现行国家标准《城镇污水处理厂污染物排放标准》GB18918的有关规定,对排放的污水应进行脱氮除磷处理,为保证较高的脱氮除磷效果,初次沉淀池的处理效率不宜太高,以维持足够碳氮和碳磷比例。当沉淀池的有效水深为2.0m~4.0m时,初次沉淀池的沉淀时间为0.5h~2.0h,其相应的表面水力负荷为1.5m/(mh)~4.5m/(mh);二次沉淀池活性污泥法的沉淀时间为1.5h~4.0h,其相应的表面水力负荷为0.6m/(mh)~1.5m/(mh)。对于周边进水周边出水辐流沉淀池,由于其独特的水流特征,表面水力负荷较高,近年来根据国内各污水厂的实际运行资料,一般为1.1m/(mh)~1.5m/(mh),相应的固体负荷也较高,约为160kg/(md)~200kg/(md)。沉淀池的污泥量是根据每人每日SS和BOD5数值,按沉淀池沉淀效率经理论推算求得。污泥含水率,按国内污水厂的实践数据制定。7.5.2 本条是根据国内实践数据,并参照国外规范而制定的。《日本指南》沉淀池的超高宜为50cm;美国《污水处理设施》(2014年)规定沉淀池的超高不应小于0.3m。按国内污水厂实践经验,沉淀池的超高取0.3m~0.5m,本标准采用0.3m,沿海城市当考虑到风大等因素,沉淀池的超高可采用0.5m。7.5.3 沉淀池的沉淀效率由池的表面积决定,与池深无多大关系,因此宁可采用浅池。但实际上若水池过浅,因水流会引起污泥的扰动,使污泥上浮,温度、风等外界影响也会使沉淀效率降低。若水池过深,会造成投资增加。故有效水深以2.0m~4.0m为宜。7.5.4 本条是根据国内实践经验制定的,国外规范也有类似规定。每个泥斗分别设阀门(或闸门)和排泥管,目的是便于控制排泥。7.5.5 本条是根据国内实践数据,并参照国外规范而制定的。污泥区容积包括污泥斗和池底贮泥部分的容积。7.5.7 本条是根据国内实践数据,并参照国外规范而制定的。7.5.8 本条参照国外资料,规定了出水堰最大负荷,各种类型的沉淀池都宜遵守。周边进水周边出水辐流沉淀池由于表面水力负荷较高,出水槽一般采用单侧集水的形式,因此出水堰负荷较高。根据目前国内部分污水厂的运行情况,出水堰最大负荷可适当放大。7.5.9 据调查,初次沉淀池和二次沉淀池出流处会有浮渣积聚,为防止浮渣随出水溢出,影响出水水质,应设置撇除、输送和处置设施。Ⅱ 沉淀池7.5.10 本条是关于平流沉淀池设计的规定。1 本款是对长宽比和长深比的要求。长宽比过小,水流不易均匀平稳,过大会增加池中水平流速,两者都影响沉淀效率。《日本指南》规定长宽比为3~5,英、美等国家的资料建议也为3~5,本款规定长宽比不宜小于4。长深比苏联规范规定为8~12,本款规定长深比不宜小于8,池长不宜大于60m。2 本款是对排泥机械行进速度的要求。据国内外资料介绍,链条刮板式的行进速度通常取0.6m/min。3 本款是对缓冲层高度的要求,参照苏联规范制定。4 本款是对池底纵坡的要求。设刮泥机时的池底纵坡不宜小于0.01。《日本指南》规定为0.01~0.02。按表面水力负荷设计平流沉淀池时,可按水平流速进行校核。平流沉淀池的最大水平流速:初次沉淀池为7mm/s,二次沉淀池为5mm/s。7.5.11 本条是关于竖流沉淀池设计的规定。1 本款是对径深比的要求。根据竖流沉淀池的流态特征,径深比不宜大于3。2 中心管内流速不宜过大是为防止影响沉淀区的沉淀作用。3 中心管下口设喇叭口和反射板,以消除进入沉淀区的水流能量,保证沉淀效果。7.5.12 本条是关于辐流沉淀池设计的规定。1 本款是对径深比的要求。根据辐流沉淀池的流态特征,径深比宜为6~12。《日本指南》为6~12,沉淀效果较好,本款采用5~12。为减少风对沉淀效果的影响,池径宜小于50m。2 本款是对排泥方式和排泥机械的要求。近年来,国内各地区设计的辐流沉淀池,其直径都较大,配有中心传动或周边驱动的桁架式刮泥机,已取得成功经验,故规定宜采用机械排泥。《日本指南》规定排泥机械旋转速度为1r/h~3r/h,刮泥板的外缘线m/min。当池子直径较小,且无配套的排泥机械时,可考虑多斗排泥,但管理较麻烦。5 周边进水周边出水辐流沉淀池进水渠要求沿程配水基本均匀,一般采用变断面法,同时进水渠应保证一定的流速,避免进水中的悬浮物发生沉淀。Ⅲ 斜管(板)沉淀池7.5.13 据调查,国内城镇污水厂有采用斜管(板)沉淀池作为初次沉淀池和二次沉淀池的生产实践经验。在用地紧张,需要挖掘原有沉淀池的潜力,或需要压缩沉淀池面积等条件下,通过技术经济比较,可采用斜管(板)沉淀池。7.5.14 根据理论计算,升流式异向流斜管(板)沉淀池的表面水力负荷比普通沉淀池大几倍,但国内污水厂多年生产运行实践表明,升流式异向流斜管(板)沉淀池的设计表面水力负荷不宜过大,不然沉淀效果不稳定,宜按普通沉淀池设计表面水力负荷的2倍计。据调查,斜管(板)二次沉淀池的沉淀效果不太稳定,为防止泛泥,本条规定对于斜管(板)二次沉淀池,应以固体负荷核算。7.5.15 本条是根据国内污水厂斜管(板)沉淀池采用的设计参数和运行情况而做出的相应规定。1 斜管孔径(或斜板净距)一般为45mm~100mm,通常取80mm,本条规定宜为80mm~100mm。4 斜管(板)区上部水深为0.5m~0.7m,本条规定宜为0.7m~1.0m。5 底部缓冲层高度为0.5m~1.2m,本条规定宜为1.0m。7.5.16 根据国内生产实践经验,斜管内和斜板上有积泥现象,为保证斜管(板)沉淀池的正常稳定运行,本条规定斜管(板)沉淀池应设置冲洗设施。Ⅳ 高效沉淀池7.5.17 沉淀污泥有一定的凝聚性能,回流污泥颗粒能够增加絮凝体的沉降速度,同时污泥中生物絮体的絮凝吸附作用能够较大程度地提高污染物的去除率,同时可以避免过量投加药剂。污泥循环一般采用污泥泵从泥斗中抽取回流至絮凝池的方式。根据国内生产实践经验,通过污水和回流污泥混凝、絮凝增大悬浮物尺寸的高效沉淀池,用于深度处理工艺时,表面水力负荷宜为6m/(mh)~13m/(mh);用于一级强化处理工艺时,表面水力负荷可以适当提高。当高效沉淀池添加砂、磁粉等重介质增强絮凝效果时,表面水力负荷也可适当提高。7.6 活性污泥法

  7.6 活性污泥法7.6.1 应根据去除碳源污染物、脱氮、除磷、污泥减量、好氧污泥稳定等不同要求和外部环境条件,选择适宜的活性污泥处理工艺。7.6.2 当采用鼓风曝气时,生物反应池的设备操作平台宜高出设计水面0.5m~1.0m;当采用机械曝气时,生物反应池的设备操作平台宜高出设计水面0.8m~1.2m。7.6.3 污水中含有大量产生泡沫的表面活性剂时,应有除泡沫措施。7.6.4 在生物反应池有效水深一半处宜设置放水管。7.6.5 廊道式生物反应池的池宽和有效水深之比宜采用1:1~2:1。有效水深应结合流程设计、地质条件、供氧设施类型和选用风机压力等因素确定,可采用4.0m~6.0m。当条件许可时,水深尚可加大。7.6.6 生物反应池中的好氧区(池),采用鼓风曝气器时,处理立方米污水的供气量不宜小于3m。当好氧区采用机械曝气器时,混合全池污水所需功率不宜小于25W/m;氧化沟所需功率不宜小于15W/m。缺氧区(池)、厌氧区(池)应采用机械搅拌,混合功率宜采用2W/m~8W/m。机械搅拌器布置的间距、位置,应根据试验资料确定。7.6.7 生物反应池的设计应充分考虑冬季低水温对去除碳源污染物、脱氮和除磷的影响,必要时可采取降低负荷、增长泥龄、调整厌氧区(池)、缺氧区(池)、好氧区(池)水力停留时间和保温或增温等措施。7.6.8 污水、回流污泥进入生物反应池的厌氧区(池)、缺氧区(池)时,宜采用淹没入流方式。Ⅱ 传统活性污泥法7.6.9 去除碳源污染物的生物反应池的主要设计参数可按表7.6.9的规定取值。表7.6.9 去除碳源污染的生物反应池的主要设计参数7.6.10 当以去除碳源污染物为主时,生物反应池的容积可按下列公式计算:1 按污泥负荷计算:2 按污泥龄计算:式中:V生物反应池的容积(m);Q生物反应池的设计流量(m/d);So生物反应池进水五日生化需氧量浓度(mg/L);Se生物反应池出水五日生化需氧量浓度(mg/L)(当去除率大于90%时可不计入);Ls生物反应池的五日生化需氧量污泥负荷[kgBOD5/(kgMLSSd)];X生物反应池内混合液悬浮固体平均浓度(gMLSS/L);Y污泥产率系数(kgVSS/kgBOD5),宜根据试验资料确定,无试验资料时,可取0.4~0.8;C设计污泥龄(d),其数值为3~15;XV生物反应池内混合液挥发性悬浮固体平均浓度(gMLVSS/L);Kd衰减系数(d-1),20℃的数值为0.040~0.075。7.6.11 衰减系数Kd值应以当地冬季和夏季的污水温度进行修正,并应按下式计算:式中:KdTT℃时的衰减系数(d-1);Kd2020℃时的衰减系数(d-1);T温度系数,采用1.02~1.06;T设计温度(℃)。7.6.12 生物反应池的始端可设缺氧或厌氧选择区(池),水力停留时间宜采用0.5h~1.0h。7.6.13 阶段曝气生物反应池宜采取在生物反应池始端1/2~3/4的总长度内设置多个进水口。7.6.14 吸附再生生物反应池的吸附区和再生区可在一个反应池内,也可分别由两个反应池组成,并应符合下列规定:1 吸附区的容积,不应小于生物反应池总容积的1/4,吸附区的停留时间不应小于0.5h;2 当吸附区和再生区在一个反应池内时,沿生物反应池长度方向应设置多个进水口;进水口的位置应适应吸附区和再生区不同容积比例的需要;进水口的尺寸应按通过全部流量计算。7.6.15 完全混合生物反应池可分为合建式和分建式。合建式生物反应池的设计,应符合下列规定:1 生物反应池宜采用圆形,曝气区的有效容积应包括导流区部分;2 沉淀区的表面水力负荷宜为0.5m/(mh)~1.0m/(mh)。Ⅲ 厌氧/缺氧/好氧法(AAO或A2O法)7.6.16 当以脱氮除磷为主时,应采用厌氧/缺氧/好氧法(AAO或A2O法)的水处理工艺,并应符合下列规定:1 脱氮时,污水中的五日生化需氧量和总凯氏氮之比宜大于4;2 除磷时,污水中的五日生化需氧量和总磷之比宜大于17;3 同时脱氮、除磷时,宜同时满足前两款的要求;4 好氧区(池)剩余总碱度宜大于70mg/L(以CaCO3计),当进水碱度不能满足上述要求时,应采取增加碱度的措施。7.6.17 当仅需脱氮时,宜采用缺氧/好氧法(ANO法),并应符合下列规定:1 生物反应池中好氧区(池)的容积,采用污泥负荷或污泥龄计算时,可按本标准第7.6.10条所列公式计算,其中反应池中缺氧区(池)的水力停留时间宜为2h~10h;2 生物反应池的容积,采用硝化、反硝化动力学计算时,可按下列公式计算:1)缺氧区(池)容积可按下列公式计算:式中:Vn缺氧区(池)容积(m);Q生物反应池的设计流量(m/d);Nk生物反应池进水总凯氏氮浓度(mg/L);Nte生物反应池出水总氮浓度(mg/L);△Xv排出生物反应池系统的微生物量(kgMLVSS/d);Kde脱氮速率[kgNO3-N/(kgMLSSd)],宜根据试验资料确定;当无试验资料时,20℃的Kde值可采用(0.03~0.06)[kgNO3-N/(kgMLSSd)],并按本标准公式(7.6.17-2)进行温度修正;Kde(T)、Kde(20)一一分别为T℃和20℃时的脱氮速率;X生物反应池内混合液悬浮固体平均浓度(gMLSS/L);T设计温度(℃);Y污泥产率系数(kgVSS/kgBOD5),宜根据试验资料确定。无试验资料时,可取0.3~0.6;So生物反应池进水五日生化需氧量浓度(mg/L);Se生物反应池出水五日生化需氧量浓度(mg/L)。2)好氧区(池)容积可按下列公式计算:式中:Vo好氧区(池)容积(m);Q生物反应池的设计流量(m/d);So生物反应池进水五日生化需氧量浓度(mg/L);Se生物反应池出水五日生化需氧量浓度(mg/L);co好氧区(池)设计污泥龄(d);Yt污泥总产率系数(kgMLSS/kgBOD5),宜根据试验资料确定;无试验资料时,系统有初次沉淀池时宜取0.3~0.6,无初次沉淀池时宜取0.8~1.2;X生物反应池内混合液悬浮固体平均浓度(gMLSS/L);F安全系数,宜为1.5~3.0;硝化细菌比生长速率(d-1);Na生物反应池中氨氮浓度(mg/L);Kn硝化作用中氮的半速率常数(mg/L);T设计温度(℃);0.4715℃时,硝化细菌最大比生长速率(d-1)。3)混合液回流量可按下式计算:式中:QRi混合液回流量(m/d),混合液回流比不宜大于400%;Vn缺氧区(池)容积(m);Kde脱氮速率[kgNO3-N/(kgMLSSd)],宜根据试验资料确定;无试验资料时,20℃的Kde值可采用(0.03~0.06)[kgN/(kgNO3-N/(kgMLSSd)],并按本标准公式(7.6.17-2)进行温度修正;X生物反应池内混合液悬浮固体平均浓度(gMLSS/L);Nt生物反应池进水总氮浓度(mg/L);Nke生物反应池出水总凯氏氮浓度(mg/L);QR回流污泥量(m/d)。3 缺氧/好氧法(ANO法)生物脱氮的主要设计参数,宜根据试验资料确定;当无试验资料时,可采用经验数据或按表7.6.17的规定取值。

  表7.6.17 缺氧/好氧法(ANO法)生物脱氮的主要设计参数续表7.6.17

  7.6.18 当仅需除磷时,宜采用厌氧/好氧法(ApO法),并应符合下列规定:1 生物反应池中好氧区(池)的容积,采用污泥负荷或污泥龄计算时,可按本标准第7.6.10条所列公式计算。2 生物反应池中厌氧区(池)的容积,可按下式计算:

  式中:Vp厌氧区(池)容积(m);tp厌氧区(池)停留时间(h),宜为1~2;Q生物反应池的设计流量(m/d)。3 厌氧/好氧法(ApO)生物除磷的主要设计参数,宜根据试验资料确定;无试验资料时,可采用经验数据或按表7.6.18的规定取值。

  4 采用生物除磷处理污水时,剩余污泥宜采用机械浓缩。5 生物除磷的剩余污泥,采用厌氧消化处理时,输送厌氧消化污泥或污泥脱水滤液的管道,应有除垢措施。含磷高的液体,宜先回收磷或除磷后再返回污水处理系统。7.6.19 当需要同时脱氮除磷时,宜采用厌氧/缺氧/好氧法(AAO或A2O法),并应符合下列规定:1 生物反应池的容积,宜按本标准第7.6.10条、第7.6.17条和第7.6.18条的规定计算;2 厌氧/缺氧/好氧法(AAO或A2O法)生物脱氮除磷的主要设计参数,宜根据试验资料确定;无试验资料时,可采用经验数据或按表7.6.19的规定取值;

  表7.6.19 厌氧/缺氧/好氧法(AAO或A2O法)生物脱氮除磷的主要设计参数续表7.6.19

  3 根据需要,厌氧/缺氧/好氧法(AAO或A2O法)的工艺流程中,可改变进水和回流污泥的布置形式,调整为前置缺氧区(池)或串联增加缺氧区(池)和好氧区(池)等变形工艺。

  7.6.20 氧化沟前可不设初次沉淀池。7.6.21 氧化沟前可设置厌氧池。7.6.22 氧化沟可按两组或多组系列布置,并设置进水配水井。7.6.23 氧化沟可与二次沉淀池分建或合建。7.6.24 延时曝气氧化沟的主要设计参数,宜根据试验资料确定;当无试验资料时,可采用经验数据或按表7.6.24的规定取值。

  7.6.25 当采用氧化沟进行脱氮除磷时,宜符合本标准第7.6.16条~第7.6.19条的有关规定。7.6.26 氧化沟的进水和回流污泥点宜设在缺氧区首端,出水点宜设在充氧器后的好氧区。当采用转刷、转碟时,氧化沟的设备平台高出设计水面宜为0.5m;当采用竖轴表曝机时,宜为0.6m~0.8m,氧化沟的设备平台宜高出设计水面0.8m~1.2m。7.6.27 氧化沟有效水深的确定应考虑曝气、混合、推流的设备性能,宜采用3.5m~4.5m。7.6.28 根据氧化沟渠宽度,弯道处可设置一道或多道导流墙;导流墙宜高出设计水位0.2m~0.3m。7.6.29 曝气转刷、转碟宜安装在沟渠直线段的适当位置,曝气转碟也可安装在沟渠的弯道上,竖轴表曝机应安装在沟渠的端部。7.6.30 氧化沟的走道和工作平台,应安全、防溅和便于设备维修。7.6.31 氧化沟内的平均流速宜大于0.25m/s。7.6.32 氧化沟系统宜采用自动控制。

  7.6.33 SBR反应池的数量不宜少于2个。7.6.34 SBR反应池容积可按下式计算:

  式中:V生物反应池容积;Q每个周期进水量(m);So生物反应池进水五日生化需氧量浓度(mg/L);X生物反应池内混合液悬浮固体平均浓度(gMLSS/L);Ls生物反应池的五日生化需氧量污泥负荷[kgBOD5/(kgMLSSd)];tR每个周期反应时间(h)。7.6.35 污泥负荷的取值,以脱氮为主要目标时,宜按本标准表7.6.17的规定取值;以除磷为主要目标时,宜按本标准表7.6.18的规定取值;同时脱氮除磷时,宜按本标准表7.6.19的规定取值。7.6.36 SBR工艺各工序的时间宜按下列公式计算:1 进水时间可按下式计算:

  式中:tF每池每个周期所需要的进水时间(h);t一个运行周期所需要的时间(h);n每个系列反应池个数。2 反应时间可按下式计算:

  式中:tR每个周期反应时间(h);ts沉淀时间(h);tD排水时间(h);tb闲置时间(h)。7.6.37 每天的周期数宜为正整数。7.6.38 连续进水时,反应池的进水处应设置导流装置。7.6.39 反应池宜采用矩形池,水深宜为4.0m~6.0m;反应池长度和宽度之比:间隙进水时宜为1:1~2:1,连续进水时宜为2.5:1~4:1。7.6.40 反应池应设置固定式事故排水装置,可设在滗水结束时的水位处。7.6.41 反应池应采用有防止浮渣流出设施的滗水器;同时,宜有清除浮渣的装置。

  7.6.42 膜生物反应器工艺的主要设计参数宜根据试验资料确定。当无试验资料时,可采用经验数据或按表7.6.42的规定取值。

  注:*其他反应区(池)的设计MLSS可根据回流比计算得到。7.6.43 膜生物反应器工程中膜系统运行通量的取值应小于临界通量。临界通量的选取应考虑膜材料类型、膜组件和膜组器型式、污泥混合液性质、水温等因素,可实测或采用经验数据。同时,应根据生物反应池设计流量校核膜的峰值通量和强制通量。7.6.44 浸没式膜生物反应器平均通量的取值范围宜为15L/(mh)~25L/(mh),外置式膜生物反应器平均通量的取值范围宜为30L/(mh)~45L/(mh)。7.6.45 布设膜组器时,应留10%~20%的富余膜组器空位作为备用。7.6.46 膜生物反应器工艺应设置化学清洗设施。7.6.47 膜离线清洗的废液宜采用中和等措施处理,处理后的废液应返回污水处理构筑物进行处理。

  7.6.1外部环境条件一般指操作管理要求,包括水量、水质、占地、供电、地质、水文和设备供应等。7.6.3目前常用的消除泡沫的措施有水喷淋和投加消泡剂等方法。7.6.4生物反应池投产初期采用间歇曝气培养活性污泥时,静沉后用作排除上清液。7.6.5本条适用于推流式运行的廊道式生物反应池。生物反应池的池宽和水深之比宜采用1:1~2:1,曝气装置沿一侧布置时,生物反应池混合液的旋流前进的水力状态较好。有效水深4.0m~6.0m是根据国内鼓风机的风压能力,并考虑尽量降低生物反应池占地面积而确定的。当条件许可时也可采用较大水深,目前国内一些大型污水厂采用的水深为6.0m,也有一些污水厂采用的水深超过6.0m。7.6.6缺氧区(池)、厌氧区(池)的搅拌功率:在《污水处理新工艺与设计计算实例》一书中推荐取3W/m,美国《污水厂手册》推荐取5W/m~8W/m,中国市政工程西南设计研究总院有限公司曾采用过2W/m,本标准建议为2W/m~8W/m。所需功率均以曝气器配置功率表示。7.6.7 我国的寒冷地区,冬季水温一般在6℃~10℃,短时间可能为4℃~6℃。生物反应池设计时应核算污水处理过程中低气温对污水温度的影响。7.6.8 污水进入厌氧区(池)、缺氧区(池)时,采用淹没入流方式的目的是避免引起复氧。

  7.6.9 有关设计数据是根据我国污水厂回流污泥浓度一般为4g/L~8g/L的情况确定的。如回流污泥浓度不在上述范围时,可适当修正。当处理效率可以降低时、负荷可适当增大。当进水五日生化需氧量低于一般城镇污水时,负荷应适当减小。生物反应池主要设计参数中,容积负荷LV、污泥负荷LS和污泥浓度X相关;同时又必须按生物反应池实际运行规律来确定数据,即不可无依据地将本标准规定的LS和X取端值相乘确定最大的容积负荷LV。Q为反应池设计流量,不包括污泥回流量。采用旱季设计流量设计,用雨季设计流量复核。X为反应池内混合液悬浮固体MLSS的平均浓度,适用于推流式、完全混合式生物反应池。吸附再生反应池的X是根据吸附区的混合液悬浮固体和再生区的混合液悬浮固体,按这两个区的容积进行加权平均得出的理论数据。7.6.10 由于目前很少采用按容积负荷计算生物反应池的容积,因此将按容积负荷计算的公式列入条文说明中以备方案校核、比较时参考使用,以及采用容积负荷指标时计算容积之用。按容积负荷计算生物反应池的容积时,可按下式计算:

  式中:V生物反应池的容积(m);Q生物反应池的设计流量(m/d);So生物反应池进水五日生化需氧量浓度(mg/L);LV生物反应池的五日生化需氧量容积负荷[kgBOD5/(md)]。根据国内外的工程实际应用情况,当生物反应池仅用于去除碳源污染物时,污泥龄取值一般为3d~6d;当生物反应池兼顾硝化时污泥龄取值宜为3d~15d。7.6.11 衰减系数Kd的值和温度有关,本条列出了污水温度修正公式。7.6.12 选择区(池)的作用是改善污泥性质,防止污泥膨胀。7.6.13 本条是根据国内外有关阶段曝气法的资料制定。阶段曝气的特点是污水沿池的始端1/2~3/4长度内分数点进入(即进水口分布在两廊道生物反应池的第一条廊道内,三廊道生物反应池的前两条廊道内,四廊道生物反应池的前三条廊道内),尽量使反应池混合液的氧利用率接近均匀,所以容积负荷比普通生物反应池大。7.6.14 根据国内污水厂的运行经验,参照国外有关资料,规定吸附再生生物反应池吸附区和再生区的容积和停留时间。它的特点是回流污泥先在再生区作较长时间的曝气,然后和污水在吸附区充分混合,较短时间接触,但一般不小于0.5h。7.6.15 本条对合建式生物反应池设计做出规定。1 据资料介绍,一般生物反应池的平均耗氧速率为30mg/(Lh)~40mg/(Lh)。根据对上海某污水厂和湖北某印染厂污水站的生物反应池回流缝处测定实际的溶解氧,表明污泥室的溶解氧浓度不一定能满足生物反应池所需的耗氧速率,为安全考虑,合建式完全混合反应池曝气部分的容积应包括导流区,但不包括污泥室容积。2 根据国内运行经验,沉淀区的沉淀效果易受曝气区的影响。为了保证出水水质,沉淀区表面水力负荷宜为0.5m/(mh)~1.0m/(mh)。

  7.6.16本条是关于采用厌氧/缺氧/好氧法(AAO或A2O法)的水处理工艺的规定。1 污水的五日生化需氧量和总凯氏氮之比是影响脱氮效果的重要因素之一。异养性反硝化菌在呼吸时,以有机基质作为电子供体,硝态氮作为电子受体,即反硝化时需消耗有机物。青岛等地污水厂运行实践表明,当污水中五日生化需氧量和总凯氏氮之比大于4时,可达到理想脱氮效果;五日生化需氧量和总凯氏氮之比小于4时,脱氮效果不好。五日生化需氧量和总凯氏氮之比过小时,需外加碳源才能达到理想的脱氮效果。外加碳源可采用甲醇,它被分解后产生二氧化碳和水,不会留下任何难以分解的中间产物。由于城镇污水水量大,外加甲醇的费用较大,有些污水厂将淀粉厂、制糖厂、酿造厂等排出的高浓度有机废水作为外加碳源,取得了良好效果。当五日生化需氧量和总凯氏氮之比为4或略小于4时,可不设初次沉淀池或缩短污水在初次沉淀池中的停留时间,以增大进生物反应池污水中五日生化需氧量和氮的比值。2 生物除磷由吸磷和放磷两个过程组成,聚磷菌在厌氧放磷时,伴随着溶解性可快速生物降解的有机物在菌体内储存。若放磷时无溶解性可快速生物降解的有机物在菌体内储存,则聚磷菌在进入好氧环境中并不吸磷,此类放磷为无效放磷。生物脱氮和除磷都需要有机碳,在有机碳不足,尤其是溶解性可快速生物降解的有机碳不足时,反硝化菌和聚磷菌争夺碳源,会竞争性地抑制放磷。污水的五日生化需氧量和总磷之比是影响除磷效果的重要因素之一。若比值过低,聚磷菌在厌氧池放磷时释放的能量不能很好地被用来吸收和储藏溶解性有机物,影响该类细菌在好氧池的吸磷,从而使出水磷浓度升高。广州地区的一些污水厂,在五日生化需氧量和总磷之比大于或等于17时,取得了良好的除磷效果。3 若五日生化需氧量和总凯氏氮之比小于4,则难以完全脱氮而导致系统中存在一定的硝态氮的残余量,这样即使污水中五日生化需氧量和总磷之比大于17,其生物除磷的效果也将受到影响。4 一般地说,聚磷菌、反硝化菌和硝化细菌生长的最佳pH值在中性或弱碱性范围,当pH值偏离最佳值时,反应速度逐渐下降,碱度起着缓冲作用。污水厂生产实践表明,为使好氧池的pH值维持在中性附近,池中剩余总碱度宜大于70mg/L。每克氨氮氧化成硝态氮需消耗7.14g碱度,大大消耗了混合液的碱度。反硝化时,还原1g硝态氮成氮气,理论上可回收3.57g碱度,此外,去除1g五日生化需氧量可以产生0.3g碱度。出水剩余总碱度可按下式计算:

  式中:Ae出水剩余总碱度(mg/L,以CaCO3计);Ar剩余总碱度(mg/L,以CaCO3计);Ao进水总碱度(mg/L,以CaCO3计);So生物反应池进水五日生化需氧量浓度(mg/L);Se生物反应池出水五日生化需氧量浓度(mg/L);△Nde反硝化脱氮量(mgNO3-N/L);△N0硝化氮量(mgNH3-N/L);3 美国环境保护署(EPA)推荐的还原1g硝态氮可回收3g碱度。当进水碱度较小,硝化消耗碱度后,好氧池剩余碱度小于70mg/L,可增加缺氧池容积,以增加回收碱度量。在要求硝化的氨氮量较多时,可布置成多段缺氧/好氧形式。在该形式下,第一个好氧池仅氧化部分氨氮,消耗部分碱度,经第二个缺氧池回收碱度后再进入第二个好氧池消耗部分碱度,这样可减少对进水碱度的需要量。7.6.17 生物脱氮由硝化和反硝化两个生物化学过程组成。氨氮在好氧池中通过硝化细菌作用被氧化成硝态氮,硝态氮在缺氧池中通过反硝化菌作用被还原成氮气逸出。硝化菌是化能自养菌,需在好氧环境中氧化氨氮获得生长所需能量;反硝化菌是兼性异养菌,它们利用有机物作为电子供体,硝态氮作为电子最终受体,将硝态氮还原成气态氮。由此可见,为了发生反硝化作用,必须具备以下条件:①硝态氮;②有机碳;③基本无溶解氧(溶解氧会消耗有机物)。为了有硝态氮,处理系统应采用较长泥龄和较低负荷。缺氧/好氧法可满足上述要求,适用于脱氮。1 缺氧/好氧工艺中好氧区(池)的容积计算,可采用本标准第7.6.10条生物去除碳源污染物的计算方法。2 公式(7.6.17-1)是缺氧池容积的计算方法,式中0.12为微生物中氮的分数。反硝化速率Kde与混合液回流比、进水水质、温度和污泥中反硝化菌的比例等因素有关。混合液回流量大,带入缺氧池的溶解氧多,Kde取低值;进水有机物浓度高且较易生物降解时,Kde取高值。温度变化可用公式(7.6.17-2)修正,式中1.08为温度修正系数。由于污水总悬浮固体中的一部分沉积到污泥中,结果产生的污泥将大于由有机物降解产生的污泥,在许多不设初次沉淀池的处理工艺中更甚。因此,在确定污泥总产率系数时,必须考虑污水中总悬浮固体的含量,否则,计算所得的剩余污泥量往往偏小。污泥总产率系数随温度、泥龄和内源衰减系数变化而变化,不是一个常数。对于某种生活污水,有初次沉淀池和无初次沉淀池时,泥龄-污泥总产率曲线 有初次沉淀池时泥龄-污泥总产率系数曲线

  5反映了污水中总悬浮固体和五日生化需氧量之比,比值大,剩余污泥量大,即Yt值大。泥龄c影响污泥的衰减,泥龄长,污泥衰减多,即Yt值小。温度影响污泥总产率系数,温度高,Yt值小。公式(7.6.17-4)介绍了好氧区(池)容积的计算公式。公式(7.6.17-6)为计算硝化细菌比生长速率的公式,式中0.47为15℃时硝化细菌最大比生长速率;硝化作用中氮的半速率常数Kn是硝化细菌比生长速率等于硝化细菌最大比生长速率一半时氮的浓度,Kn的典型值为1.0mg/L;e0.098(T-15)是温度校正项。自养硝化细菌比异养菌的比生长速率小得多,如果没有足够长的泥龄,硝化细菌就会从系统中流失。为了保证硝化发生,泥龄须大于1/。在需要硝化的场合,以泥龄作为基本设计参数是十分有利的。公式(7.6.17-6)是从纯种培养试验中得出的硝化细菌比生长速率。为了在环境条件变得不利于硝化细菌生长时,系统中仍有硝化细菌,在公式(7.6.17-5)中引入安全系数F,城镇污水可生化性好,F宜取1.5~3.0。公式(7.6.17-7)是混合液回流量的计算公式。如果好氧区(池)硝化作用完全,回流污泥中硝态氮浓度和好氧区(池)相同,回流污泥中硝态氮进缺氧区(池)后全部被反硝化,缺氧区(池)有足够碳源,则系统最大脱氮率是总回流比(混合液回流量加上回流污泥量和进水流量之比)r的函数,r=(QRi+QR)/Q,最大脱氮率=r/(1+r)。由公式(7.6.17-7)可知,增大总回流比可提高脱氮效果,但是,总回流比为4时,再增加回流比,对脱氮效果的提高不大。总回流比过大,会使系统由推流式趋于完全混合式,导致污泥性状变差;在进水浓度较低时,会使缺氧区(池)氧化还原电位(ORP)升高,导致反硝化速率降低。上海市政工程设计研究总院观察到总回流比从1.5上升到2.5,ORP从218mV上升到192mV,反硝化速率从0.08kgNO3/(kgVSSd)下降到0.038kgNO3/(kgVSSd)。回流污泥量的确定,除计算外,还应综合考虑提供硝酸盐和反硝化速率等方面的因素。3 在设计中虽然可以从参考文献中获得一些动力学数据,但由于污水的情况千差万别,因此只有试验数据才最符合实际情况,有条件时应通过试验获取数据;若无试验条件时,可通过相似水质、相似工艺的污水厂,获取数据。生物脱氮时,由于硝化细菌世代时间较长,要取得较好脱氮效果,需较长泥龄。以脱氮为主要目标时,泥龄可取11d~23d。相应的五日生化需氧量污泥负荷较低、污泥产率较低、需氧量较大,水力停留时间也较长。表7.6.17所列设计参数为经验数据。7.6.18 生物除磷必须具备以下条件:①厌氧(无硝态氮);②有机碳。厌氧/好氧法可满足上述要求,适用于除磷。1 厌氧/好氧工艺的好氧区(池)的容积计算,根据经验可采用本标准第7.6.10条生物去除碳源污染物的计算方法,并根据经验确定厌氧和好氧各区的容积比。2 在厌氧区(池)中先发生脱氮反应消耗硝态氮,然后聚磷菌释放磷,释磷过程中释放的能量可用于其吸收和贮藏溶解性有机物。若厌氧区(池)停留时间小于1h,磷释放不完全,会影响磷的去除率,综合考虑除磷效率和经济性,规定厌氧区(池)停留时间宜为1h~2h。在只除磷的厌氧/好氧系统中,由于无硝态氮和聚磷菌争夺有机物,厌氧池停留时间可取下限。3 活性污泥中聚磷菌在厌氧环境中会释放出磷,在好氧环境中会吸收超过其正常生长所需的磷。通过排放富磷剩余污泥,可比普通活性污泥法从污水中去除更多的磷。由此可见,缩短泥龄,即增加排泥量可提高磷的去除率。以除磷为主要目的时,泥龄可取3.5d~7.0d。表7.6.18所列设计参数为经验数据。4 除磷工艺的剩余污泥在污泥浓缩池中浓缩时会因厌氧放出大量磷酸盐,用机械法浓缩污泥可缩短浓缩时间,减少磷酸盐析出量。5 生物除磷工艺的剩余活性污泥厌氧消化时会产生大量灰白色的磷酸盐沉积物,这种沉积物极易堵塞管道。青岛某污水厂采用厌氧/缺氧/好氧法(AAO或A2O法)工艺处理污水,该厂在消化池出泥管、后浓缩池进泥管、后浓缩池上清液管道和污泥脱水后滤液管道中均发现灰白色沉积物,弯管处尤甚,严重影响了正常运行。这种灰白色沉积物质地坚硬,不溶于水;经盐酸浸泡,无法去除。该厂在这些管道的转弯处增加了法兰,还拟对消化池出泥管进行改造,将原有的内置式管道改为外部管道,便于经常冲洗保养。污泥脱水滤液和第二级消化池上清液,磷浓度十分高,如不除磷,直接回到集水池,则磷从水中转移到泥中,再从泥中转移到水中,只是在处理系统中循环,严重影响了磷的去除效率,这类磷酸盐宜采用化学法去除。除化学除磷外,磷回收技术也得到不断应用。7.6.19 本条是脱氮除磷采用厌氧/缺氧/好氧法(AAO或A2O法)的相关规定。1 生物同时脱氮除磷,要求系统具有厌氧、缺氧和好氧环境,厌氧/缺氧/好氧法可满足这一条件。脱氮和除磷是相互影响的。脱氮要求较低负荷和较长泥龄,除磷却要求较高负荷和较短泥龄。脱氮要求有较多硝酸盐供反硝化,而硝酸盐不利于除磷。设计生物反应池各区(池)容积时,应根据氮、磷的排放标准等要求,寻找合适的平衡点。2 脱氮和除磷对泥龄、污泥负荷和好氧停留时间的要求是相反的。在需同时脱氮除磷时,综合考虑泥龄的影响后,可取10d~22d。本标准表7.6.19所列设计参数为经验数据。3 厌氧/缺氧/好氧法(AAO或A2O法)工艺中,当脱氮效果好时,除磷效果较差。反之亦然,不能同时取得较好的效果。针对这些存在的问题,可对工艺流程进行变形改进,调整泥龄、水力停留时间等设计参数,改变进水和回流污泥等布置形式,从而进一步提高脱氮除磷效果。图6为一些变形的工艺流程。图6 一些变形的工艺流程

  7.6.21 氧化沟前设置厌氧池可提高系统的除磷功能。7.6.22 在交替式运行的氧化沟中,需设置进水配水井,井内设闸或溢流堰,按设计程序变换进出水水流方向;当有两组及以上平行运行的系列时,也需设置进水配水井,以保证均匀配水。

  7.6.23 按构造特征和运行方式的不同,氧化沟可分为多种类型,其中有连续运行、与二次沉淀池分建的氧化沟,如Carrousel型多沟串联系统氧化沟、Orbal同心圆或椭圆形氧化沟和DE型交替式氧化沟等;也有集曝气、沉淀于一体的氧化沟,又称合建式氧化沟,如船式一体化氧化沟和T型交替式氧化沟等。

  7.6.26 进水和回流污泥从缺氧区首端进入,有利于反硝化脱氮。出水宜在充氧器后的好氧区,是为了防止二次沉淀池中出现厌氧状态。7.6.27 随着曝气设备不断改进,氧化沟的有效水深也在变化。当采用转刷时,不宜大于3.5m;当采用转碟、竖轴表曝机时,不宜大于4.5m。7.6.31 为了保证活性污泥处于悬浮状态,国内外普遍采用沟内平均流速为0.25m/s~0.35m/s。《日本指南》规定沟内平均流速为0.25m/s,本标准规定宜大于0.25m/s。为改善沟内流速分布,可在曝气设备上、下游设置导流墙。7.6.32 氧化沟自动控制系统可采用时间程序控制,也可采用溶解氧或氧化还原电位(ORP)控制。在特定位置设置溶解氧探头,可根据池中溶解氧浓度控制曝气设备的开关,有利于满足运行要求,且可最大限度地节约动力。对于交替运行的氧化沟,宜设置溶解氧控制系统,控制曝气转刷的连续、间歇或变速转动,以满足不同阶段的溶解氧浓度要求或根据设定的模式进行运行。Ⅴ序批式活性污泥法(SBR)7.6.33 考虑到清洗和检修等情况,SBR反应池的数量不宜少于2个。但水量较小(小于500m/d)时,设2个反应池不经济,或当投产初期污水量较小、采用低负荷连续进水方式时,可建1个反应池。

  7.6.36 SBR工艺是按周期运行的,每个周期包括进水、反应(厌氧、缺氧、好氧)、沉淀、排水和闲置五个工序,前四个工序是必需工序。

  非好氧反应时间内,发生反硝化反应和放磷反应。运行时可增减闲置时间调整非好氧反应时间。公式(7.6.36-2)中充水比的含义是每个周期进水体积和反应池容积之比。充水比的倒数减1,可理解为回流比;充水比小,相当于回流比大。要取得较好的脱氮效果,充水比要小;但充水比过小,反而不利,可参见本标准第7.6.17条的条文说明。排水目的是排除沉淀后的上清液,直至达到开始向反应池进水时的最低水位。排水可采用滗水器,所用时间由淹水器的能力决定。排水时间可通过增加滗水器台数或加大溢流负荷来缩短。但是,缩短了排水时间将增加后续处理构筑物(如消毒池等)的容积和增大排水管管径。综合两者关系,排水时间宜为1.0h~1.5h。闲置不是一个必需的工序,可以省略。在闲置期间,根据处理要求,可以进水、好氧反应、非好氧反应和排除剩余污泥等。闲置时间的长短由进水流量和各工序的时间安排等因素决定。7.6.37 本条规定是为了便于运行管理。7.6.38 由于污水的进入会搅动活性污泥,此外,若进水发生短流会造成出水水质恶化,因此连续进水时,反应池的进水处应设置导流装置。7.6.39 矩形反应池可布置紧凑,占地少。水深应根据鼓风机出风压力确定,如果反应池水深过大,排出水的深度相应增大,则固液分离所需时间就长,同时,受滗水器结构限制,滗水不能过多;如果反应池水深过小,由于受活性污泥界面以上最小水深(保护高度)限制,排出比小,不经济。综合以上考虑,本条规定完全混合型反应池水深宜为4.0m~6.0m。连续进水时,如反应池长宽比过大,流速大,会带出污泥,长宽比过小,会因短流而造成出水水质下降,故长宽比宜为2.5:1~4:1。7.6.40 滗水器故障时,可用事故排水装置应急。固定式排水装置结构简单,适合作为事故排水装置。7.6.41 由于SBR工艺一般不设初次沉淀池,浮渣和污染物会流入反应池。为了不使反应池水面上的浮渣随处理水一起流出,首先应设沉砂池、除渣池(或极细格栅)等预处理设施,其次应采用有挡板的滗水器。反应池宜有撇渣机等浮渣清除装置,否则反应池表面会积累浮渣,影响环境和处理效果。Ⅵ 膜生物反应器(MBR)7.6.43 为尽可能地减轻膜污染,膜系统运行通量的取值应小于临界通量。同时,设计过程中应根据生物反应池设计流量校核膜峰值通量和强制通量。为了减轻膜的污染,延长膜使用寿命,峰值通量和强制通量宜按临界通量的80%~90%选取。

  o运行通量[L/(mh)];to产水泵运行时间(min);tp产水泵暂停时间(min)。7.6.45 膜生物反应器长期运行时,膜污染会导致膜的实际通量永久性地降低,为满足污水厂处理规模的要求,应预留10%~20%的富余膜组器空位作为备用。7.6.46 为有效缓解膜污染,膜生物反应器工艺应设置化学清洗设施。膜化学清洗设施一般包括在线化学清洗设施和离线化学清洗设施。膜清洗药剂包括碱洗药剂和酸洗药剂,碱洗药剂包括次氯酸钠、氢氧化钠等;酸洗药剂包括拧檬酸、草酸、盐酸等。碱洗和酸洗管路系统要严格分开,不能混用。7.7 回流污泥和剩余污泥

  7.7.1 回流污泥设施宜采用离心泵、混流泵、潜水泵、螺旋泵或空气提升器。当生物处理系统中带有厌氧区(池)、缺氧区(池)时,应选用不易复氧的回流污泥设施。7.7.2 回流污泥设施宜分别按生物处理系统中的最大污泥回流比和最大混合液回流比计算确定。回流污泥设备台数不应少于2台,并应有备用设备,空气提升器可不设备用。回流污泥设备,宜有调节流量的措施。7.7.3 剩余污泥量可按下列公式计算:1 按污泥龄计算:式中:△X剩余污泥量(kgSS/d);V生物反应池的容积(m);X生物反应池内混合液悬浮固体平均浓度(gMLSS/L);c污泥龄(d)。2 按污泥产率系数、衰减系数及不可生物降解和惰性悬浮物计算:式中:Y污泥产率系数(kgVSS/kgBOD5),20℃时宜为0.3~0.8;Q设计平均日污水量(m/d);So生物反应池进水五日生化需氧量(kg/m);Se生物反应池出水五日生化需氧量(kg/m);Kd衰减系数(d-1);XV生物反应池内混合液挥发性悬浮固体平均浓度(gMLVSS/L);fSS的污泥转换率,宜根据试验资料确定,无试验资料时可取(0.5~0.7)(gMLSS/gSS);SSo生物反应池进水悬浮物浓度(kg/m);SSe生物反应池出水悬浮物浓度(kg/m)。条文说明7.7.1生物脱氮除磷处理系统中应尽可能减少污泥回流过程中的复氧,使厌氧段和缺氧段的溶解氧值尽可能低,以利于脱氮和除磷。7.7.3本条对剩余污泥量做出规定。公式(7.7.3-1)中,剩余污泥量和泥龄成反比关系。公式(7.7.3-2)中的Y值为污泥产率系数。理论上污泥产率系数是指单位五日生化需氧量降解后产生的微生物量。由于微生物在内源呼吸时要自我分解一部分,其值随内源衰减系数(泥龄、温度等因素的函数)和泥龄变化而变化,不是一个常数。污泥产率系数Y,采用活性污泥法去除碳源污染物时为0.4~0.8;采用ANO法时为0.3~0.6;采用ApO法时为0.4~0.8;采用AAO法时为0.3~0.6,因此,其取值范围为0.3~0.8。“十二五”水专项课题“重点流域城市污水处理厂污泥处理处置技术优化应用研究”(2013ZX07315-003)中对全国106座污水厂的污泥产率系数Y进行了研究和解析,发现采用A2O/AO工艺和氧化沟工艺的污水厂污泥合成产率系数经过数据拟合得到的平均值分别为0.782kgVSS/kgBOD5和0.755kgVSS/kgBOD5。由于污水中有相当量的惰性悬浮固体,它们性质不变地沉积到污泥中,在许多不设初次沉淀池的处理工艺中其值更甚。计算剩余污泥量必须考虑原水中惰性悬浮固体的含最,否则计算所得的剩余污泥量往往偏小。由于水质差异很大,因此悬浮固体的污泥转换率相差也很大。德国水协DWA标准推荐取0.6。《日本指南》推荐取0.9~1.0。悬浮固体的污泥转换率,有条件时可根据试验确定,或参照相似水质污水厂的实测数据;当无试验条件时可取0.5gMLSS/gSS~0.7gMLSS/gSS(MLSS是mixedliquorsuspendedsolids的简写)。活性污泥中,自养菌所占比例极小,故可忽略不计。出水中的悬浮物没有单独计入。若出水的悬浮物含量过高。

相关推荐
  • 优游平台-首页
  • 欧皇_平台注册登录中心-首页
  • 博悦娱乐-登录网址
  • AG注册-链接
  • 开心注册,首页
  • 聚星平台(中国)-官方入口
  • 首页,火星注册平台
  • 恒行娱乐-登录首页
  • 首页!优博娱乐主管
  • 首页、星际娱乐挂机
  • 脚注信息
    版权所有Copyright(C)2022-2023利澳注册 txt地图 HTML地图 XML地图
    友情链接: 傲世皇朝